A Stable and Convergent Finite Difference Scheme for 2D Incompressible Nonlinear Viscoelastic Fluid Dynamics Problem

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stabilized finite volume element method for the 2D nonlinear incompressible viscoelastic flow equation

In this article, we devote ourselves to building a stabilized finite volume element (SFVE) method with a non-dimensional real together with two Gaussian quadratures of the nonlinear incompressible viscoelastic flow equation in a two-dimensional (2D) domain, analyzing the existence, stability, and error estimates of the SFVE solutions and verifying the validity of the preceding theoretical concl...

متن کامل

Unconditionally Stable Difference Scheme for the Numerical Solution of Nonlinear Rosenau-KdV Equation

In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in...

متن کامل

An Energy Stable and Convergent Finite-Difference Scheme for the Modified Phase Field Crystal Equation

We present an unconditionally energy stable finite difference scheme for the Modified Phase Field Crystal equation, a generalized damped wave equation for which the usual Phase Field Crystal equation is a special degenerate case. The method is based on a convex splitting of a discrete pseudoenergy and is semi-implicit. The equation at the implicit time level is nonlinear but represents the grad...

متن کامل

An Energy-Stable and Convergent Finite-Difference Scheme for the Phase Field Crystal Equation

We present an unconditionally energy stable finite-difference scheme for the phase field crystal equation. The method is based on a convex splitting of a discrete energy and is semiimplicit. The equation at the implicit time level is nonlinear but represents the gradient of a strictly convex function and is thus uniquely solvable, regardless of time step size. We present local-in-time error est...

متن کامل

Convergent Finite Difference Scheme for 1d Flow of Compressible Micropolar Fluid

In this paper we define a finite difference method for the nonstationary 1D flow of the compressible viscous and heat-conducting micropolar fluid, assuming that it is in the thermodynamical sense perfect and polytropic. The homogeneous boundary conditions for velocity, microrotation and heat flux are proposed. The sequence of approximate solutions for our problem is constructed by using the def...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied and Computational Mathematics

سال: 2018

ISSN: 2328-5605

DOI: 10.11648/j.acm.20180701.12